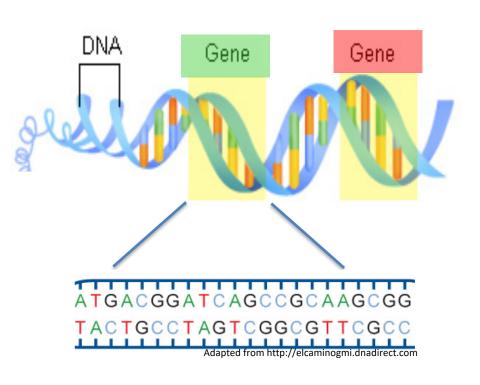
Malan Syndrome: A distinct disorder of overgrowth and neurodevelopment

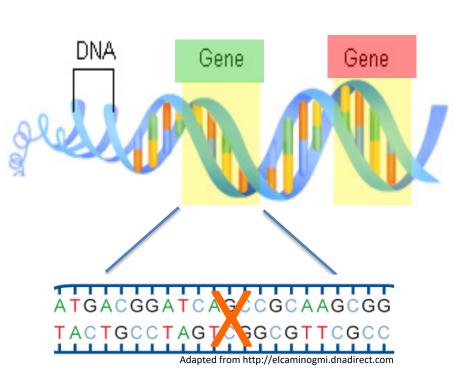
Jill A. Fahrner, MD, PhD Assistant Professor, Pediatrics & Genetics Johns Hopkins School of Medicine McKusick-Nathans Institute of Genetic Medicine SSSA Annual Meeting July 13, 2019

THE MCKUSICK-NATHANS EPIGENETICS AND CHROMATIN CLINIC (ECC)

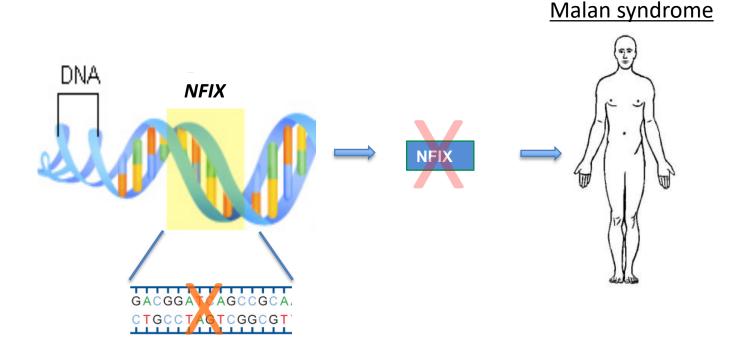

No Disclosures

Objectives

- To introduce concepts of Genetics
- To understand Malan syndrome as a genetic disease
- To provide an update on current knowledge of molecular changes in Malan syndrome
- To review clinical features of Malan syndrome
- To understand connection between Malan syndrome and Sotos syndrome


DNA, Genes, and the Genetic Code

- Our bodies are made up of billions of cells
- Each cell contains genetic material in the form of DNA
- DNA contains 22,000 genes
- Genes determine traits
- Each gene is a set of instructions (code) to make a protein with a specific function
- DNA sequence (code) is made up of 4 bases
- "Genetics" refers to the DNA code


Genetic mutations are mistakes in the DNA code that cause disease

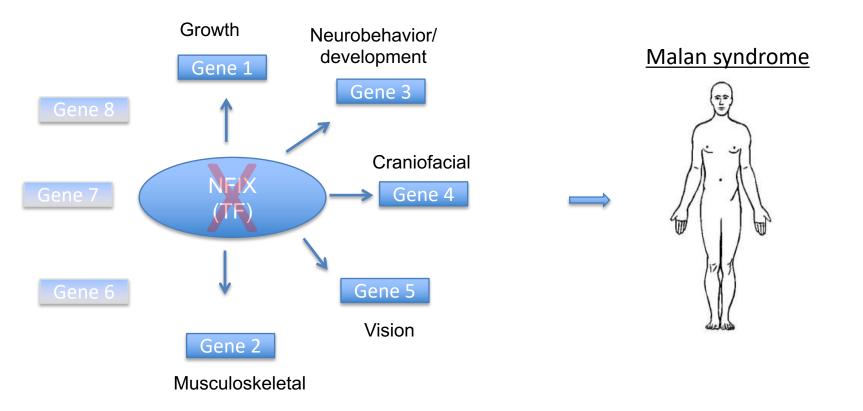
- Our bodies are made up of billions of cells
- Each cell contains genetic material in the form of DNA
- DNA contains 22,000 genes
- Genes determine traits
- Each gene is a set of instructions (code) to make a protein with a specific function
- DNA sequence (code) is made up of bases

Mutation

Mutations in the Nuclear Factor one X (NFIX) gene cause Malan syndrome

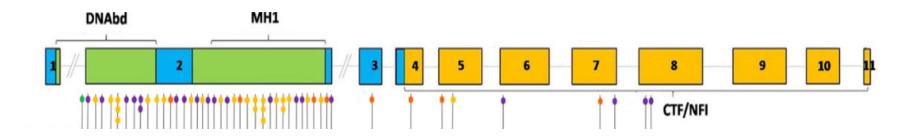
Adapted from http://elcaminogmi.dnadirect.com

Summary 1


DNA is the genetic material and contains genes

• Mutations are mistakes in genes that alter the DNA sequence or code

 Mutations in genes (*NFIX*) cause disease (Malan syndrome)


How do mutations in *NFIX* cause Malan syndrome?

NFIX encodes a transcription factor that turns many genes (with many functions) on and off

When NFIX is not fully functional, these genes are not turned on and off correctly.

Malan syndrome results from mutations in the NFIX gene

- Affected individuals typically have *de novo* and unique mutations
- Inherited in an autosomal dominant manner
- Most mutations that cause Malan syndrome occur in exon 2
- Other mutations in *NFIX* can cause a distinct condition, Marshall-Smith syndrome
- A smaller number of individuals with Malan syndrome have a 19p13 deletion that includes *NFIX* and other genes

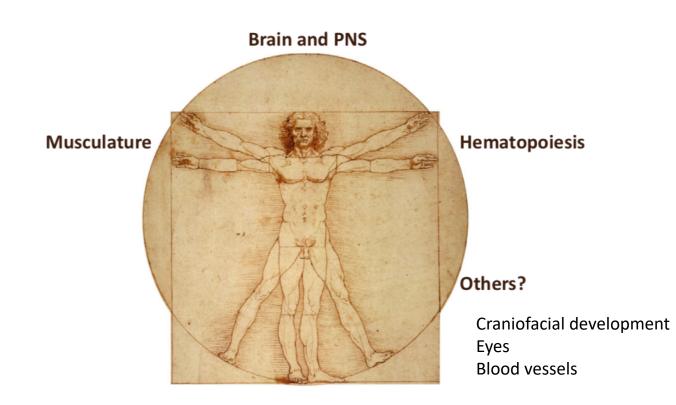
Facial characteristic in Malan syndrome

Priolo et al. Hum Mutation 2018

Clinical features in individuals with Malan syndrome

- Overgrowth
 - Macrocephaly
 - Tall stature
- Intellectual disability (ID)/global developmental delay
 - Moderate-severe with some mild
- Neurobehavioral features
 - Hypotonia
 - Anxiety
 - Autistic features
 - Seizures/EEG abnormalities*
 - Brain MRI findings

- Eye findings
 - Small optic nerves
 - Low vision
 - Poor depth perception
 - Reduced peripheral vision
 - Strabismus
 - Cortical vision impairment
- Musculoskeletal findings
 - Scoliosis +/- kyphosis
 - Pectus deformity of chest
 - Slender body habitus
- Highly arched palate
- Aortic, PA dilation/aneurysms

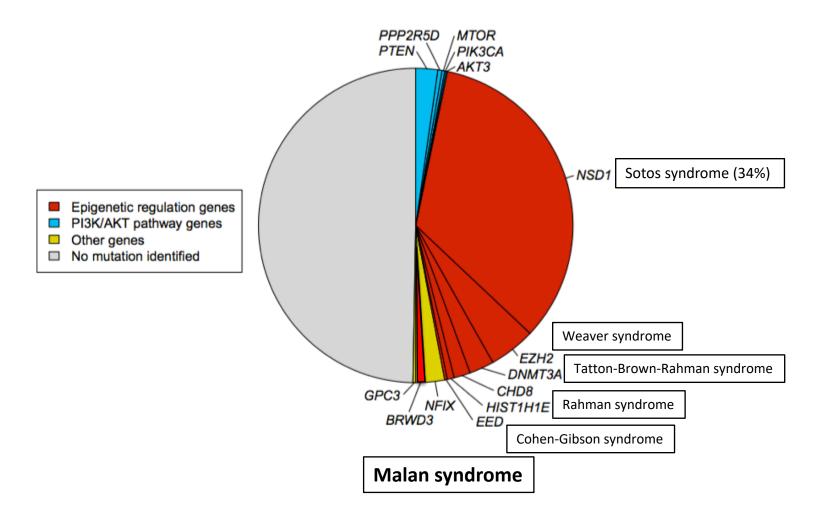

Work-up for individuals with Malan syndrome

- Echocardiogram to evaluate for cardiac structural anomalies
- Abdominal ultrasound to evaluate for organ enlargement or structural anomalies
- Ophthalmologic exam to evaluate for eye findings
- Consider brain MRI to evaluate for structural anomalies

Clinical Genetic Testing for Malan syndrome

- Sequencing and deletion/duplication of *NFIX* (gene panel preferred over single gene testing)
- Exome sequencing-most/all protein coding genes (trio preferred over proband only)
- SNP microarray/Array CGH to evaluate for the deletion
- Parental testing

NFIX is involved in multiple organs systems


Organ system or disease	Evidence for role of NFIX
CNS (brain size)	<i>Nfix^{-/-}</i> mice have significantly larger brains
CNS (hippocampus)	Delayed hippocampal progenitor cell differentiation in Nfix-/- mice
	Reduced symmetric neural stem cell divisions in Nfix-/- mice
	Bias towards oligodendrogenesis in Nfix ^{-/-} hippocampal NSCs
	Nfix ^{-/-} mice have defects in learning and memory
CNS (cortex and ventricles)	Aberrant neuroblast progenitor proliferation in SVZ and neuroblast migration in RMS of $N fi x^{-/-}$ mice
	Delayed radial glial differentiation in Nfix ^{-/-} mice
	Bias towards oligodendrogenesis in Nfix ^{-/-} NSCs
	Nfix implicated in regulation of quiescence of NSCs
	Nfix required for normal ependymal cell structure and function
CNS (cerebellum)	Nfix is expressed in multiple cell populations in cerebellum
	Delay in development of cerebellar granule neurons, Purkinje cells, and Bergmann glia in $N fi x^{-/-}$ cerebella
PNS (spinal cord)	Delayed astrocyte differentiation in Nfix-/- spinal cord
Hematopoiesis	Reduced colony-forming ability in Nfix-deficient HSPCs
	Nfix promotes Mpl expression and HSPC survival
	Nfix can promote conversion of B cells to myeloid cells
	Loss of Nfix promotes myeloid and lymphoid differentiation
Musculature	NFIX regulates embryonic-to-fetal muscle transition
	NFIX interacts with PKC θ and Mef2A, activating MCK expression
	NFIX represses MyHC-I expression by inhibiting NFATc4
	Nfix modulates myostatin expression
	Nfix mediates Sox6 inhibition of MyHC-I expression

Piper et al. Trends Cell Biol 2019

Why was Malan syndrome previously called Sotoslike syndrome or Sotos 2?

- Sotos syndrome and Malan syndrome have very similar features
- Many individuals with Malan syndrome previously had a clinical diagnosis of Sotos syndrome but no mutation in NSD1
- We now know Malan syndrome is a distinct disorder
- Many other distinct disorders resemble Sotos syndrome and Malan syndrome
- Malan syndrome is no longer called Sotos 2 (or Sotoslike syndrome)

We know the molecular cause of half of the overgrowth and intellectual disability disorders that overlap closely with Sotos and Malan syndromes

Acknowledgements

Malan Syndrome Foundation Sotos Syndrome Support Association

The McKusick-Nathans Epigenetics and Chromatin Clinic (ECC) https://igm.jhmi.edu/ecc-clinic Appointment phone: 410-955-3071